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T T 7 WIND-TUNNEL INVESTIGATION OF A PLAIN ALLERON

ARD A BALANCED ATILERON ON A TAPERED WING
WITH FULL-SPAN IUPLEX FLAPS
By F. M. Rogallo and John G. Lowry

- SUMMARY

An investigation was made of a plain aileron and a balanced
alleron on a tapered wing with full-span duplex flaps, which con-
sisted of an inboard NACA slotted flap and an outboard balanced
split flap. The investigation was made in the T- by l0-foot wind
tunnel of the Langley Memorial Aercnautical Laboratory. Increments
of maximm lift coefficient of 0.82 and 1.04 were obtained fram the
inboard flap alone and from the duplex-flap combination, respectively.
The alleron was as effective with flaps fully extended as with flaps
retracted, but a 30-percent reduction of alleron effectiveness appears
unavoldable at intermediate positions of the outboard flap. If this
reduction 1s acceptable, the wing arrangement tested should be
satisfactory. Estimated rates of roll and stick forces for the
arrangement on a fighter airplane are given.

INTRODUCTION

Increased speed and wing loading of modern alrplanes have led to
difficultlies in obtaining high 1lifts for landing and take-off wlthout
impalring lateral control. In order to obtaln solutions for this
problem, the NACA is investigating, on a semispan model of the tapered

" wing of a modern fighter airplane, lateral-control devices that

appeared promising from wind-tunnel tests on a rectangular wing with
a2 square tip. ]

The pi-esent teats were made of a plain and a balanced aileron
on a wirg with full-span "duplex" flaps consisting of an inboard NACA
slotted flap and an outboard balanced split flap. This work may be

‘consldered sa éxfénsion of the work reported im reference 1. A

8imilar arrangament is to be flight-tested. The obJect of the wind-
tunnel tests was to determine the 1lift characteristiocs and the
alleron-control. charncteristics for various locations of the outboard
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flap and for various emounts of ailerom bala.:noe.

The stick forces and the rates of roll were estimated for an
alrplane with the outboard flap in several positions along a parti-
cular flap path. s

APPARATUS AND METHOIS

A semispan model was suspended in the T- by 1l0-foot wind
tunnel (referemnce 2; of the Langley Memorial Aeronautical Laboratory
as shown schematically in figure 1. The root chord of the model was
adjacent to one of the vertical walls of the tunnel, the vertical wall
thereby serving as a reflection plame. The flow over a semlspan in
this set-up is essentially the seme as 1t would be over a complete
wing in a T- by 20-foot wind tumnel. Although a very emall clearance
was maintained bwtween the root chord of the model and the tunnel wall,
no part of the modsl was fastened to or in contact with the tunnel
wall. The model was suspended entirely frocm the balance freme, as
shown in figure 1, so that all the forces and moments acting on the
model might be determined. Provisions were made for changing the angle
. of attack while the tunnel was in operation. ' :

The allerons were defdected by means of a calibrated torque rod
connecting the outboard and of the alleron with a crank outside the
tunn?l wall, the hinge moments being determined from the twlst of the
rod (fig. 1). :

The tapered wing model used in -these tests was bullt to the plan
form shown in figure 2(a) and represents the cross-hatched portion of
the airplane in figure 2(b). The airfoil sections_were of the NACA 230
series tapering in thickness fram approximately 15% percent at the

Toot to 8- percent at the tip (table I). The basic chord, c¢,, of the

wing mo was arbitrarily increased 3/10 inch to reduce the trailing-
edge thickmess and the last few stations were refalred to give a smooth
contour. :

The slotted flap was bullt to the ordinates of teble IT and had a
chord of about 20.7 percent of the wing chord. The ordinates are given
for the boot and tip sections. The flap was cut at the 52.3-1inch
station for these tests. The slot shape and flap-plvot point are given
in table ITI. The outboard flap, consisting of a constant chord Clark Y
airfoll, could be tested with the nose in the positions shown by the
grid in figure 2(c). The aileron had provisicns for changing the bal-
ance and consisted of a 15.5-percent-chord plain alleron with a balance



plate attached to the nose of the alleron (fig. 2(c)). The balance
plates.wvere tapered along-the.span of the aileron to glve the maximum
balance with the required deflections. The balance chord is the dis-
tance from the hinge axis to a point midway between the edges of the
seal with aileron neutral. .

All tests wore made at a dynamic pressure of 9.2l pounds per
square foot, which corresponds to a veloolity of about 60 miles per
haur and to a test Reynolde number of about 1,540,000 based on the
mean aerodynamic chord of 33.66 inches.

Coefficients and Corrsctiords

The symbols used in the presentation of results are:
Cy, 11ft coefficient (L/q8)
Cp wncorrected drag coefficient (D/qS)
Cp pitching-moment coefficient (M/qSc')
cy! rolling-moment coefficient (L'/qbS)
Cp' yeving-moment coefficient (N'/qbS)
Cp aileron hinge-moment coefficient (H,/qb, %

ACy, ch of up aileron mims Cn of d4own alleron

c wing chord at any spanwise location with fla.ps retracted
c! mean aerodynamic chord

Cq aileron chord mesasured along alrfoil-chord line from hinge
axls of alleron to trailing edge of alrfoil

oy balance chord measured from hinge axis to point midwey
between seal edge with ailerons neatral

- root-mean-square chord of the alleron
a',b root-mean-square chord of alleron balance
Gp/3, belance ratio '



. b © twlos epan of semispen'model’
by atleron spen-
8 twice area of sul:ls-pa.n model
L .:'Mcourtmsmspanmm
.tw:loe drag on semispan model
twice pitching moment of semispan model about support axis

L' rolling moment, due to aileromn decrlection, abont wind axis
in plane of s:meuw

F'  yawing mament, due to alleron deflection, about wind axis
in plane of symmetry

Hy alleron moment about hinge axis

dynamic pressure of air etream (1/2 pva) mcorreoted for
blocking

Y free-stream veloclty

[~ ]

(.1 angle of attack

Ba alleron deflection rola.tive to wing, positive when trailing
odge is down .

8f, inboard flap deflection relative to wing, positive when
tralling edge is down

6f2 angle between chord line of wing.and lower surface of cutboard
flap

Cy rate of change of rolling-moment coefficient C.' with helix
) angle v/2V l
rate of roll
stick foroe

A positive value of L' or cz' correspund.s to an increase in lift

of the model, and a positive value of K' corresponds to a
decrease in é.ra.g of the model. Twice the act 111'1-., drag, pitching

mament, area, and spen of the model was used in the reduction of the
results 'booa.use the model represented half of a camplete wing. The
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drag coefficient and the angle of atiack have been corrected only in
acoordance with the theory of trailing-vortex images. Corresponding
corrections were epplied to.thq rolling- and.yawing-mmment coefficients.
No corrections have been applied to the hingo-moment coefficients,

and no corrections have been applied to any of the results for the
effects of the support strut or the treatmsnt of the inboard end of the
wing; that is, the amall gap between the wing and the wall, the leakage
through the wall around the support tube, and the boundary layer at the
wall, It is believed that the drag values are only camparative and are
not directly applicable to performance. estimaticns.

Lift Characteristics.

Contours of the location of ocutboard-flap nose for maximm lift
coefficlient of the wing with inboard end outboard flaps deflected 50°
and L40O°, respectlvely, are shown in figure 3. An incresse of maximm
1ift coefficient is apparent as the flap i1s moved back to the ailerom
axis. Vertlcal location of the flap had little effect on the maximm
11ft coefficient over the range of locaticms tested but would prob-
ably have an important effect in more rearward locations and with gaps
of less than 0.0bc, as shown on figuro 4 of reference 3.

The chordwlse location of the deflected outboard-flap nose
appears to have a greater effect on the pitching-moment coefficient -
than upon the lift or drng coefficients. (Jee fig. 4(a).) The
results of tests with aileron neutral and with the ocutboard-flap nose
2-, b-, and 6-percent c¢ below the wing contour at positions 4 and 5
showed very llttle effect of vertical location upon 1lift, drag, or
Pliching-moment coefficients. The results with only the large gaps
are presented. The angular setting of the extended outboard flap had
& considsrable effect upon all the characteristlcs, as shown in
figure 4(b). ' _

The maximm lift coefficiemnts obtained with flaps neutral, with

. Partial-span slotted flap deflected 50°, and with duplex flaps deflec-

ted #0° were 1.40, 2.22, and 2.il, réspectively. e values of
Cr for the thrde flaﬁ condi tiofls a;;ge expected to Increase as the

Reynolds number 1s inereased to full scale, The inoremeats of

due to the flaps may also change with scale because of a change in the
location and progression of the stall. Neither the effect of scale mor
of the tumnel boundaries upon the stall of the wing was investigated.

Alleron Characteristios

Alleron with 0-3335, balance.- When the outboard flap was
retracted, the aileren with 0+333¢, balance was limited to deflections




of +14°. With these aileron deflections, the maximm rolling-
momént coeffidient was found to depend oritically upon the position
and defleotion of the outboard flap, as shown in figure 5. A study
of the contours of figure 5 indicates that, although there need be
no loss in rolling-moment coefficlent with the flaps fully extended
relative to the flap-retracted condition, a reduction of aileron
effeotiveness during extension of the outboard flap appears to be
inevitable. The reduction need be no more than about a third of

the flap~neutral value, however, if the flap path 1s properly

chosen. The rolling-, yawing-, and hinge-mcment coefficients of

the aileron with both flaps retracted, with the inboard flap fully
deflected and the outboard flap retracted, and with the inboard

flap fully deflected and the outboard flap at several positions along
a promising flap path are given in figure 6. It 1s believed that the
fairing of the hinge-moment coefficient curves of Pigure 6 is more
nearly correct than point-to-point falring because of the amall
clearances in the aileron system and unavoldable friction. Rates of
roll and stick forces based on these data will be presented later.

Alleron with 0.415%, balance.- Tests of the alleron with -

0.4155, balance were made primarily to determine the effect of bal-

ance upon the hinge-momemt coefficlent. A comparlson of these data
(fig. T) with the data of figure 6(a) shows that the reduction of

s Was the principel effect of the increase of balance, as was
to be expected. With this balance it was anticipated that a deflec~
tion range of 112° would be obtained but an error in construc-
tlon, the range obtained was from 5° to-l4~. It was not comsidered
vorth while to alter the model, because the desired information may be
obtained by comparing the hinge moment of this aileron with that of
other ailerons over the same deflection range.

Plain sealed aileron.-The characteristice of the plain sealed
aileron on the wing with flaps retracted are given in figure 8(a)
and with the outboard flap in several positions but at a single angle
of attack, in figure 8(b), These data provide a basis of comparison
for the determination .of the effectiveness of the internal balances
and an extension of the rolling- and yawing-mament coefficients to
higher alleron deflections than were possible with the internmal balances.

Effect of balance upon 3Ch/da and 3Cp/38s .~ The aileron hinge-
moment slopes OCp/d0. and OCjp/00s for the three amounts of balance
tested are compared in figure Y. The values of Cp/db, &lven were
egtimated for the aileron 50 to =50 at angles of attack of. O
and 13°, and the wvalues of vere egtimated for the « ranges
of approximately -4° to 4° and 9° to 17° with alleron neutral. It
will be noticed that the mumerical valuesof both derivatives are




considsrably greatar :ln the high ang;l.o-ctt-at'back rapge than.in the
“high-speed mge T

s ma 42 =r maer T oAl m . oa

“Eotinated Rates of Roll and Stick Forces” v

- - ' 'The rates of roll and the stick forces &iring steady rolling
for the airplane shown in figure 2(b) have been estimated from the
data of figure 6. (See fig. 10.) The rates of roll were estimated
by means of the relatiomship - -

Pb/ﬂ = cl'/clt (1)
p
vhers C; , the coefficient of damping in roll, was taken as 0.46

from the data of reference 4. Wing twist has been neglected. The
‘atick forces were estimated from the relationship

Fg = 60 ACK/Cy, (2)

vhich may be derived from the alléron dimemsions and the following
elrplane characterietice:

Wing area, 8qQuare £eet « « « « o« o s s o o o2 s 0 o = s oo 260
m, f”t L L L] L] L] L] L] L L L] L] [ ] L ] L] L L] [ ] L . L] L] L] L L] L[] 38
mper mtio L] L] L] L L] L] L] L] L] L] L] L] L L [ ] L L L] L] L] L] l.67=1
Airfoil Bectim - L ] L] L] [ J L L ] L] L] L] [ ] L] L] mA %o series
Mean aerodynamic chord, inches . . . . 4

Wolght, POURAS « + = « o « s s s o s o o s s s s o s ¢ o TOE3
Wing loading, pounds per square. foot « « ¢ « + « ¢« ¢+ « « 27.2
Stiaklensth,feet................--.- 2

Maximm stick deflection, degrees . « « « o ¢ o ¢ o = « o « £20
" Maximm alleron deflecticn, degrees:
0.13355'bala.nce................--.-_-I;l‘l-

0 .ussa balmce [ ] L] . L L L J L] . L] [ ) L] L] . L L] L ] L] L] L L] L] 112

The value of the constant in equation (2) is dependent upon the
wing loading, the size of the aileroms, and the travel of the ailerons
relative to the stick. The values of C,' and. ACy used in egua-

ticne (1) and (2) ere the values thought to exist during steady
rolling; thedifferenooinanglectattackdthemulemsdue
to rolling has been taken Into account.

It will be noticed in figure 10 that the variations of stick
foarce and deflection are very nearly linear with rate of roll and that
the maximum pb/2V available with flaps either retracted or fully
extended is greater than the minimum of 0.07 reguired. (Seerererenook)
The high-speed stick forces appear excessive, however, and the ailerm
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effectiveness drops off considersbly with the outboard flap in
intermediate positions. Since the flap need be in the intermedlate
positions for only the short periocd Auring its extemsion or retrac-
tion, it ls thought that a relatively low effectiveness for these
conditions will de acoceptable.

If the maximum aileron deflection is reduced to 312° and the
internal balance is increased to 0.4158,, a large reduotiom of
stick fores may be obtained with only a small loss of aileron
effectivensss. It was estimated from the data of figure 9 that the
maximm stick force would be reduced by more than 50 percent. The
Pb/2V would be reduced by only about 15 percent. (See fig. 11.)

Results of recent flight tests on a light airplane with an out-
board flap and aileron arrangement somewhat similar to that of the
present investigation (reference 5) were in general agreement with
the results presented herein.

CONCLUSIONS

1. Under the conditions of the present tests the 0.58-span
slotted flap provided an increment of 0.82 in maximm lift coeffi-
cient, and the O.40-span retractable flaps over the aileron portion
of the wing provided an additional increment of maximum 1lift coeffi-
clent of 0.22; that is, a total increment of 1.0k was given by the
duplex-flap combination.

2. Deflecting the flap over the alleron portion of the wing
reduced the effectiveness of the alleron at intermsdlate positions
of the flap but not necessarily at the final position.

3. Estimated rates of roll and stick forces indicated that
the wing arrangement tested would provide satisfactory lateral comtrol
an the assumed fighter airplane.

Langley Memorial Aercnautical Laboratory,
National Advisory Commitiee for Aeronautics,

Langley Field, Va.
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Figure 1.- Schematic .diagr"ém “of et installation. -



Slotted flap nose . 793¢ —7
Flap lip .87c
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@) General layout of model.

FioUre 2.- Tapered wing with duplex flaps.
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